Product Manual

Rac1 Activation Assay Kit

Catalog Number

STA-401-1 20 assays

FOR RESEARCH USE ONLY Not for use in diagnostic procedures

Introduction

Small GTP-binding proteins (or GTPases) are a family of proteins that serve as molecular regulators in signaling transduction pathways. Rac1, a 21 kDa protein, belongs to the family of Rho GTPases regulates a variety of biological response pathways that include cell motility, cell division, gene transcription, and cell transformation. Like other small GTPases, Rac1 regulates molecular events by cycling between an inactive GDP-bound form and an active GTP-bound form. In its active (GTP-bound) state, Rac1 binds specifically to the p21-binding domain (PBD) of p21-activated protein kinase (PAK) to control downstream signaling cascades.

Cell Biolabs' Rac1 Activation Assay Kit utilizes PAK PBD Agarose beads to selectively isolate and pull-down the active form of Rac from purified samples or endogenous lysates. Subsequently, the precipitated GTP-Rac is detected by western blot analysis using an anti-Rac1 specific monclonal antibody (see Figure 3 and Assay Principle).

Cell Biolabs' Rac1 Activation Assay Kit provides a simple and fast tool to monitor the activation of Rac1. The kit includes easily identifiable PAK1 PBD Agarose beads (see Figure 1), pink in color, and a Rac1 Immunoblot Positive Control for quick Rac1 identification. Each kit provides sufficient quantities to perform 20 assays.

Figure 1: PAK RBD Agarose beads, in color, are easy to visualize, minimizing potential loss during washes and aspirations.

Assay Principle

Related Products

- 1. STA-400: Pan-Ras Activation Assay Kit
- 2. STA-402: Cdc42 Activation Assay Kit
- 3. STA-403-A: RhoA Activation Assay Kit
- 4. STA-405: RhoA/Rac1/Cdc42 Activation Assay Combo Kit
- 5. STA-410: Raf1 RBD Agarose Beads

Kit Components

1. <u>PAK1 PBD Agarose (Part No. STA-411)</u>: One vial – 800 μL of 50% slurry, 400 μg PBD in PBS containing 50% glycerol.

Note: Agarose bead appears pink in color for easy identification, washing, and aspiration.

- 2. <u>100X GTP γ S (Part No. 240103)</u>: One vial 50 µL of 10 mM GTP γ S dissolved in sterile water.
- 3. <u>100X GDP (Part No. 240104)</u>: One vial 50 µL of 100 mM GDP dissolved in sterile water.
- 4. <u>5X Assay/Lysis Buffer (Part No. 240102)</u>: One bottle 30 mL of 125 mM HEPES, pH 7.5, 750 mM NaCl, 5% Igepal CA-630, 50 mM MgCl₂, 5 mM EDTA, 10% Glycerol.
- 5. <u>Anti-Rac1, Mouse Monoclonal (Part No. 240106)</u>: One vial 40 μL in PBS, pH 7.4, 0.05% NaN₃, 0.1% BSA.

Note: This monoclonal antibody specifically reacts with human, mouse, and rat Rac1; Additional unknown higher MW proteins may be detected in some preparations.

6. <u>Rac1 Immunoblot Positive Control (Part No. 240110)</u>: One vial – 100 μL of partially purified, recombinant Rac1 from *E. coli* (provided ready-to-use in 1X reducing SDS-PAGE Sample Buffer, pre-boiled).

Materials Not Supplied

- 1. Stimulated and non-stimulated cell lysates
- 2. Rac1 activators
- 3. Protease inhibitors
- 4. 0.5 M EDTA in water
- 5. 1 M MgCl₂
- 6. 30°C incubator or water bath
- 7. 4°C tube rocker or shaker
- 8. 2X reducing SDS-PAGE sample buffer
- 9. Electrophoresis and immunoblotting systems
- 10. Immunoblotting wash buffer such as TBST (10 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 0.05% Tween-20)
- 11. Immunoblotting blocking buffer (TBST containing 5% Non-fat Dry Milk)
- 12. PVDF or nitrocellulose membrane
- 13. Secondary Antibody
- 14. ECL Detection Reagents

Storage

Store all kit components at -20°C. The 5X Assay/Lysis Buffer may be stored at either -20°C or 4°C. Avoid multiple freeze/thaw cycles.

Preparation of Reagents

• 1X Assay/Lysis Buffer: Mix the 5X Stock briefly and dilute to 1X in deionized water. Just prior to usage, add protease inhibitors such as 1 mM PMSF, 10 µg/mL leupeptin, and 10 µg/mL aprotinin.

Preparation of Samples

Note: It is advisable to use fresh cell lysates because GTP-Rac1 is quickly hydrolyzed to GDP-Rac1; frozen lysates stored at -70°C may be used. Performing steps at 4°C or on ice may reduce hydrolysis. Avoid multiple freeze/thaw cycles of lysates.

I. Adherent Cells

- 1. Culture cells to approximately 80-90% confluence. Stimulate cells with Rac1 activator(s) as desired.
- 2. Aspirate the culture media and wash twice with ice-cold PBS.
- 3. Completely remove the final PBS wash and add ice-cold 1X Assay/Lysis Buffer to the cells (0.5 1 mL per 100 mm tissue culture plate).
- 4. Place the culture plates on ice for 10-20 minutes.
- 5. Detach the cells from the plates by scraping with a cell scraper.
- 6. Transfer the lysates to appropriate size tubes and place on ice.
- 7. If nuclear lysis occurs, the cell lysates may become very viscous and difficult to pipette. If this occurs, lysates can be passed through a 27¹/₂-gauge syringe needle 3-4 times to shear the genomic DNA.
- 8. Clear the lysates by centrifugation for 10 minutes (14,000 x g at 4° C).
- 9. Collect the supernatant and store samples on ice for immediate use, or snap freeze and store at 70°C for future use.
- 10. Proceed to GTP_γS/GDP Loading for positive and negative controls, or Pull-Down Assay.

II. Suspension Cells

- 1. Culture cells and stimulate with Rac1 activator(s) as desired.
- 2. Perform a cell count, and then pellet the cells by centrifugation.
- 3. Aspirate the culture media and wash twice with ice-cold PBS.
- 4. Completely remove the final PBS wash and add ice-cold 1X Assay/Lysis Buffer to the cell pellet (0.5 1 mL per 1 x 10⁷ cells).
- 5. Lyse the cells by repeated pipetting.
- 6. Transfer the lysates to appropriate size tubes and place on ice.
- 7. If nuclear lysis occurs, the cell lysates may become very viscous and difficult to pipette. If this occurs, lysates can be passed through a 27½-gauge syringe needle 3-4 times to shear the genomic DNA.
- 8. Clear the lysates by centrifugation for 10 minutes (14,000 x g at 4° C).

- 9. Collect the supernatant and store samples on ice for immediate use, or snap freeze and store at 70°C for future use.
- 10. Proceed to GTP_γS/GDP Loading for positive and negative controls, or Pull-Down Assay.

Assay Protocol

Important Note: Before running any Small GTPase pulldown assay, it is always a good practice to run a Western Blot directly on the cell lysate using the antibody provided in this kit. For example: load 5 μ g, 10 μ g and 20 μ g of lysate onto an SDS-PAGE gel, transfer and blot. When proceeding with the pulldown assay, use 100-times the amount of lysate that gave you a clear band of your desired small GTPase in the direct Western blot. For example: if the 5 μ g band was faint but the 10 μ g band was clear and strong, use 100 x 10 μ g = 1 mg of lysate in the assay. Using sufficient lysate in the pulldown assay is critical to success.

I. GTP_γS/GDP Loading (Positive and Negative Controls)

Note: Samples that will not be *GTP*_γ*S*/*GDP* loaded may be kept on ice during the loading of controls.

1. Aliquot 0.5 - 1 mL of each cell lysate to two microcentrifuge tubes.

Note: Typical protein content/sample is > 0.5 mg.

- 2. Adjust the volume of each sample to 1 mL with 1X Assay Lysis Buffer.
- 3. Add 20 μL of 0.5 M EDTA to each sample.
- 4. Add 10 μ L of 100X GTP γ S to one tube (positive control) and 10 μ L of 100X GDP to the other tube (negative control). Mix and label each tube appropriately.
- 5. Incubate the tubes for 30 minutes at 30°C with agitation.
- 6. Stop the loading by adding 65 μ L of 1 M MgCl₂ to each tube. Mix and place tubes on ice.
- 7. Continue with Pull-Down assay.

II. Rac1 Pull-Down Assay

- 1. Aliquot 0.5 1 mL of cell lysate (treated with Rac1 activators or untreated) to a microcentrifuge tube.
- 2. Adjust the volume of each sample to 1 mL with 1X Assay Lysis Buffer.
- 3. Thoroughly resuspend the PAK PBD Agarose bead slurry by vortexing or titurating.
- 4. Quickly add 40 μL of resuspended bead slurry to each tube (including GTPγS/GDP controls).
- 5. Incubate the tubes at 4°C for 1 hour with gentle agitation.
- 6. Pellet the beads by centrifugation for 10 seconds at 14,000 x g.
- 7. Aspirate and discard the supernatant, making sure not to disturb/remove the bead pellet.
- 8. Wash the bead 3 times with 0.5 mL of 1X Assay Buffer, centrifuging and aspirating each time.
- 9. After the last wash, pellet the beads and carefully remove all the supernatant.
- 10. Resuspend the bead pellet in 40 μL of 2X reducing SDS-PAGE sample buffer.
- 11. Boil each sample for 5 minutes.

12. Centrifuge each sample for 10 seconds at 14,000 x g.

III. Electrophoresis and Transfer

1. Load 20 μL/well of pull-down supernatant to a polyacrylamide gel. Also, it's recommended to include a pre-stained MW standard (as an indicator of a successful transfer in step 3).

Note: If desired, $10 \ \mu L$ /well of Rac1 Immunoblot Positive Control (provided ready-to-use, preboiled) can be added as an immunoblot positive control.

- 2. Perform SDS-PAGE as per the manufacturer's instructions.
- 3. Transfer the gel proteins to a PVDF or nitrocellulose membrane as per the manufacturer's instructions.

IV. Immunoblotting and Detection (all steps are at room temperature, with agitation)

1. Following the electroblotting step, immerse the PVDF membrane in 100% Methanol for 15 seconds, and then allow it to dry at room temperature for 5 minutes.

Note: If Nitrocellulose is used instead of PVDF, this step should be skipped.

2. Block the membrane with 5% non-fat dry milk in TBST for 1 hr at room temperature with constant agitation.

Incubate the membrane with Anti-Rac1 Antibody, freshly diluted 1:1000 in 5% non-fat dry milk/TBST, for 1-2 hr at room temperature with constant agitation.

Note: To conserve antibody, incubations should be performed in a plastic bag.

- 3. Wash the blotted membrane three times with TBST, 5 minutes each time.
- 4. Incubate the membrane with a secondary antibody (e.g. Goat Anti-Mouse IgG, HRP-conjugate), freshly diluted in 5% non-fat dry milk/TBST, for 1 hr at room temperature with constant agitation.
- 5. Wash the blotted membrane three times with TBST, 5 minutes each time.
- 6. Use the detection method of your choice. We recommend enhanced chemiluminescence reagents from Pierce.

Example of Results

The following figure demonstrates typical results seen with Cell Biolabs Rac1 Activation Assay Kit. One should use the data below for reference only.

Figure 2: Rac1 Activation Assay. *Left Image*: Rac1 Immunoblot Positive Control. *Right Image*: Demonstrates Anti-Rac1 monoclonal antibody specificity by dot blot.

Figure 3: Rac1 Activation Assay. *Lane 1*: MW Standard. *Lane 2*: 293 cell lysate loaded with GDP and incubated with PAK PBD Agarose beads. *Lane 3*: 293 cell lysate loaded with GTPγS and incubated with PAK-1 PBD Agarose beads.

References

- 1. Raftopoulou M., and Hall A. (2004) Dev Biol. 265: 23-32.
- 2. Bar-Sagi D., and Hall A. (2000) Cell 103: 227-38.
- 3. Benard, V., Bohl, B. P., and Bokoch, G. M. (1999) J. Biol. Chem. 274, 13198-13204.

Recent Product Citations

- 1. Kim, K.B. et al. (2022). WNT5A-RHOA signaling is a driver of tumorigenesis and represents a therapeutically actionable vulnerability in small cell lung cancer. *Cancer Res.* doi: 10.1158/0008-5472.CAN-22-1170.
- Hwang, S. et al. (2022). Exogenous 8-hydroxydeoxyguanosine attenuates doxorubicin-induced cardiotoxicity by decreasing pyroptosis in H9c2 cardiomyocytes. *BMC Mol Cell Biol.* 23(1):55. doi: 10.1186/s12860-022-00454-1.

- 3. Fu, Y. et al. (2022). CapG promoted nasopharyngeal carcinoma cell motility involving Rho motility pathway independent of ROCK. *World J Surg Oncol.* **20**(1):347. doi: 10.1186/s12957-022-02808-7.
- Yin, J. et al. (2022). Procyanidin B2 suppresses hyperglycemia-induced renal mesangial cell dysfunction by modulating CAV-1-dependent signaling. *Exp Ther Med.* doi: 10.3892/etm.2022.11423.
- 5. Zhang, Y. et al. (2022). Suppression of RNA editing by miR-17 inhibits the stemness of melanoma stem cells. *Mol Ther Nucleic Acids*. doi: 10.1016/j.omtn.2021.12.021.
- 6. Zang, C.X. et al. (2021). HACE1 negatively regulates neuroinflammation through ubiquitylating and degrading Rac1 in Parkinson's disease models. *Acta Pharmacol Sin*. doi: 10.1038/s41401-021-00778-2.
- 7. Bianchi-Smiraglia, A. et al. (2021). Regulation of local GTP availability controls RAC1 activity and cell invasion. *Nat Commun.* **12**(1):6091. doi: 10.1038/s41467-021-26324-6.
- 8. Wang, K. et al. (2021). Ginkgo biloba extract protects human neuroblastoma SH-SY5Y cells against oxidative glutamate toxicity by activating redoxosome-p66Shc. *Exp Ther Med.* doi: 10.3892/etm.2021.10383.
- Fu, P. et al. (2021). NOX4 Mediates Pseudomonas aeruginosa-Induced Nuclear Reactive Oxygen Species Generation and Chromatin Remodeling in Lung Epithelium. *Antioxidants (Basel)*. 10(3):477. doi: 10.3390/antiox10030477.
- Yang, X. et al. (2021). LINC00665 promotes the progression of acute myeloid leukemia by regulating the miR-4458/DOCK1 pathway. *Sci Rep.* 11(1):5009. doi: 10.1038/s41598-021-82834-9.
- 11. Farzaneh Behelgardi, M. et al. (2020). Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. *Mol Biol Rep.* doi: 10.1007/s11033-020-05306-9.
- 12. Stoner, S.A. et al. (2020). The RUNX1-ETO target gene RASSF2 suppresses t(8;21) AML development and regulates Rac GTPase signaling. *Blood Cancer J.* **10**(2):16. doi: 10.1038/s41408-020-0282-9.
- 13. Festa, L.K. et al. (2020). CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. *Elife*. **9**. pii: e49717. doi: 10.7554/eLife.49717.
- 14. Wang, D. et al. (2020). Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. *Breast Cancer Res.* **22**(1):3. doi: 10.1186/s13058-019-1241-x.
- 15. Pepe, G. et al. (2019). β-Lactoglobulin Heptapeptide Reduces Oxidative Stress in Intestinal Epithelial Cells and Angiotensin II-Induced Vasoconstriction on Mouse Mesenteric Arteries by Induction of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Translocation. *Oxid Med Cell Longev*. doi: 10.1155/2019/1616239.
- Morgan, E.L. et al. (2019). Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. *PLoS Pathog.* 15(6):e1007835. doi: 10.1371/journal.ppat.1007835.
- Phung, B. et al. (2019). The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. *Cell Rep.* 27(12):3573-3586.e7. doi: 10.1016/j.celrep.2019.05.069.
- 18. Kröger, C. et al. (2019). Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. *Proc Natl Acad Sci U S A*. **116**(15):7353-7362. doi: 10.1073/pnas.1812876116.

- 19. Wen-Jian, Y. et al. (2019). NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. *Arch Biochem Biophys*. **663**:101-108. doi: 10.1016/j.abb.2018.12.012.
- 20. Kang, M. et al. (2019). Roles of CD133 in microvesicle formation and oncoprotein trafficking in colon cancer. *FASEB J.* **33**(3):4248-4260. doi: 10.1096/fj.201802018R.
- 21. Guan, T. et al. (2019). Aristolochic acid inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in human umbilical vein endothelial cells. *Toxicol Lett.* **300**:51-58. doi: 10.1016/j.toxlet.2018.10.022.
- 22. Zhang, X. et al. (2019). MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. *Oncogene*. **38**(5):699-715. doi: 10.1038/s41388-018-0447-1.
- Zang, C. et al. (2018). A Novel Synthetic Derivative of Phloroglucinol Inhibits Neuroinflammatory Responses Through Attenuating Kalirin Signaling Pathway in Murine BV2 Microglial Cells. *Mol Neurobiol.* doi: 10.1007/s12035-018-1233-3.
- Liang, H. et al. (2018). Pharmacological inhibition of Rac1 exerts a protective role in ischemia/reperfusion-induced renal fibrosis. *Biochem Biophys Res Commun.* 503(4):2517-2523. doi: 10.1016/j.bbrc.2018.07.009.
- 25. Xia, P. et al. (2018). Pioglitazone Confers Neuroprotection Against Ischemia-Induced Pyroptosis due to its Inhibitory Effects on HMGB-1/RAGE and Rac1/ROS Pathway by Activating PPAR-x. *Cell Physiol Biochem.* **45**(6):2351-2368. doi: 10.1159/000488183.
- 26. Luo, W. et al. (2018). Bergamottin, a natural furanocoumarin abundantly present in grapefruit juice, suppresses the invasiveness of human glioma cells via inactivation of Rac1 signaling. Oncol Lett. 15(3):3259-3266. doi: 10.3892/ol.2017.7641.
- 27. Baranov, M.V. et al. (2017). SWAP70 is a universal GEF-like adapter for tethering actin to phagosomes. *Small GTPases* doi:10.1080/21541248.2017.1328302.
- Sherchan, P., et al. (2017). Recombinant Slit2 Reduces Surgical Brain Injury Induced Blood Brain Barrier Disruption via Robo4 Dependent Rac1 Activation in a Rodent Model. *Sci Rep.* 7(1):746. doi: 10.1038/s41598-017-00827-z.
- 29. Carrizzo, A. et al (2017). Rac1 Pharmacological Inhibition Rescues Human Endothelial Dysfunction. *J Am Heart Assoc*. **6**(3). pii: e004746. doi: 10.1161/JAHA.116.004746.
- Zeng, C. et al. (2016). Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 small GTPase phosphorylation and activation. *Am. J. Physiol. Endocrinol. Metab.* 311:E772-E780.

<u>Warranty</u>

These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance with their instructions. THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE. CELL BIOLABS' sole obligation and purchaser's exclusive remedy for breach of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. In no event shall CELL BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products.

Contact Information

Cell Biolabs, Inc. 7758 Arjons Drive San Diego, CA 92126 Worldwide: +1 858-271-6500 USA Toll-Free: 1-888-CBL-0505 E-mail: <u>tech@cellbiolabs.com</u> www.cellbiolabs.com

©2006-2024: Cell Biolabs, Inc. - All rights reserved. No part of these works may be reproduced in any form without permissions in writing.

