

<u>Ni- NTA Agarose Resin</u> (Binding capacity: <u>40 mg</u>)

NB-19-0065-25ML NB-19-0065-100ML

Ni- NTA Agarose Resin (Binding capacity:40 mg)

#Cat: NB-19-0065-25ML Size:25mL #Cat: NB-19-0065-100ML Size: 100mL

1. Contents

Components	NB-190065-25ML	NB-19-0065-100ML
Ni-NTA His-Tag Purification	25 mL	100 mL
Agarose (Settled Resin)		

2. Introduction

NeoBiotech Ni-NTA His-Tag Purification Agarose, a 6% highly cross-linked agarose reagent, enables highyield, high-purity purification of polyhistidine-tagged proteins. The affinity chromatography purification reagent consists of nitrilotriacetic acid (NTA) chelator-activated agarose beads that subsequently charged with divalent nickel (Ni²⁺) ions by four coordination sites.

NeoBiotech Ni-NTA His-Tag Purification Agarose has low Ni²⁺ leakage, high protein-binding capacity and stability, and is compatible with a wide range of chemicals and pH values, making it ideal for high performance purification of polyhistidine-tagged proteins expressed in E.coli, yeast, insect and mammalian expression systems.

3. Characteristics

Composition	6% highly cross-linked agarose
Binding Capacity	>40 mg 6 × His-tagged Protein/mL agarose
Diameter	45-165 μm
Maximum Pressure	0.3 MPa, 3 bar
Storage Solution	50% slurry in a 20% ethanol solution

4. General Protocol

4.1 Recommended Buffers:

For native conditions

Lysis Buffer	1L	50 mM NaH ₂ PO ₄ (7.80 g NaH2PO4 • ₂ H ₂ O); 300 mM NaCl (17.54 g NaCl); 10 mM imidazole (0.68 g imidazole); adjust pH to 8.0 with NaOH; filtered and sterilized using 0.22 μm or 0.45 μm filter
Wash Buffer	1L	50 mM NaH ₂ PO ₄ (7.80 g NaH ₂ PO ₄ • 2H2O); 300 mM NaCl (17.54 g NaCl); 20 mM imidazole (1.36 g imidazole); adjust pH to 8.0 with NaOH; filtered and sterilized using 0.22 μm or 0.45 μm filter
Elution Buffer	1L	50 mM NaH ₂ PO ₄ (7.80 g NaH ₂ PO ₄ • 2H ₂ O); 300 mM NaCl (17.54 g NaCl); 250 mM imidazole (17.0 g imidazole); adjust pH to 8.0 with NaOH; filtered and sterilized using 0.22 μm or 0.45 μm filter

For denaturing conditions

Lysis Buffer	1L	8 M Urea (480.50 g Urea); 100 mM NaH2PO4 (15.60 g NaH2PO4 • 2H2O); 100 mM Tris • HCl (15.76 g Tris • HCl); adjust pH to 8.0 with HCl; filtered and sterilized using 0.22 μm or 0.45 μm filter
Wash Buffer	1L	8 M Urea (480.50 g Urea); 100 mM NaH ₂ PO ₄ (15.60 g NaH ₂ PO ₄ • 2H ₂ O); 100 mM Tris • HCl (15.76 g Tris • HCl); adjust pH to 6.3 with HCl; filtered and sterilized using 0.22 μm or 0.45 μm filter
Elution Buffer	1L	8 M Urea (480.50 g Urea); 100 mM NaH ₂ PO ₄ (15.60 g NaH ₂ PO ₄ • 2H ₂ O); 100 mM Tris • HCl (15.76 g Tris • HCl); adjust pH to 4.5 with HCl; filtered and sterilized using 0.22 μm or 0.45 μm filter

4.2 Sample preparation:

For protein expressed in E. coli or yeast cytoplasm

(1) Harvest cells from culture medium by centrifugation, at 7000 rpm for 15 minutes, remove and discard the supernatant.

(2) Resuspend the cells in 1/10 volume of Lysis Buffer with appropriate amount of protease inhibitors added, which must have no effect on the binding capacity of agarose.

(3) Sonicate the solution on ice. If the lysate is too viscous, add 10 μ g/mL RNase A and 5 μ g/mL DNase I and incubate on ice for 10-15 minutes.

(4) Centrifuge the lysate at 10000 rpm for 20-30 minutes at 4°C. Transfer the supernatants to a new tube for further analysis or store at -20°C for future use.

For soluble protein secreted by yeast, insect, or mammalian expression systems

(1) Harvest cells from culture medium by centrifugation, at 5000 rpm for 10 minutes, transfer the supernatant to a new tube. If the supernatant does not contain EDTA, histidine, or any other reducing agents, it can be applied to the column. Otherwise, perform the dialysis against 1× PBS at 4°C before applying it onto the column.

(2) For large volume of supernatant, concentrate the proteins by ammonium sulphate precipitation, dialyze it against 1× PBS at 4°C before applying it onto the column.

For protein of inclusion bodies (denaturing conditions)

(1) Harvest cells from culture medium by centrifugation, at 7000 rpm for 15 minutes, remove and discard the supernatant.

(2) Resuspend the cells in 1/10 w/v volume of Lysis Buffer, sonicate the solution on ice.

(3) Transfer the sonicated solution to a new tube, centrifuge at 10000 rpm for 20-30 minutes at 4°C. Remove and discard the supernatant.

(4) Repeat step (2) & step (3) again.

(5) Resuspend the inclusion bodies in 1/10 w/v of Lysis Buffer (with 8 M Urea contained), then it could be applied onto the column.

4.3 Load of Ni-NTA His-Tag Purification Agarose:

(1) Mix the slurry by gently inverting the bottle several times to completely suspend the agarose.

(2) Transfer an appropriate-sized slurry to the column and allow the agarose to settle down and the storage buffer to drain from the column.

(3) Equilibrate the column with 3× bed volumes of ultrapure water.

4.4 Procedure:

(1) Equilibrate the column of agarose with 5× bed volumes of Lysis Buffer.

(2) Apply appropriate-sized sample to the column. If the sample contains insoluble matter, centrifuge or filter (0.22 μ m or 0.45 μ m filter) before use.

Note: Binding capacity is flow rate- and protein-dependent. Higher flow rates will decrease production time, but may result in losing a small portion of the target protein.

(3) Collect and save the flow-through for analysis.

(4) Wash the column with approximately 10-15× bed volumes of Wash Buffer or until the absorbance is stable. If desired, save supernatant for downstream analysis.

(5) Elute with approximately 5× bed volumes of Elution Buffer, collect fractions. With specific elution of protein with variant binding intensity, a range scale of Elution Buffer at different concentration is the optimal option.

(6) Analyze the target protein by SDS-PAGE, along with fractions collected from different steps if necessary.

5. Cleaning-in Place, CIP:

(1) To remove precipitated or denatured proteins and hydrophobic substances, wash the column with 5-10× bed volumes of 30% Isopropanol for 15-20 minutes of contact time followed by 10× bed volumes of ultrapure water washed.

(2) Alternatively, wash the column with 2× bed volumes of acidic or basic solution with 1% nonionic detergent for 10-15 minutes of contact time followed by 5× bed volumes of 70% ethanol, with 10× bed volumes of ultrapure water washed finally.

(3) To remove ionic binding proteins: wash the column with 5-10× bed volumes of 1.5 M NaCl for 10-15 minutes of contact time followed by 10× bed volumes of ultrapure water washed.

(4) Store agarose in 20% ethanol at 2-8°C.

6. Regeneration:

NeoBiotech Ni-NTA His-tag Purification Agarose can be used multiple times without protein yield or purity affected. If a decrease in performance is observed, the following regeneration procedures can be followed.

- (1) 2× bed volumes of 0.2 M acetic acid (with 6 M GuHCl contained).
- (2) 5× bed volumes of ultrapure water.
- (3) 3× bed volumes of 2% SDS.
- (4) 5× bed volumes of ultrapure water.
- (5) 5× bed volumes of anhydrous ethanol.
- (6) 5× bed volumes of ultrapure water.
- (7) 5× bed volumes of 100 mM EDTA (pH 8.0).
- (8) 5× bed volumes of ultrapure water.
- (9) 5× bed volumes of 100 mM NiSO4.
- (10) 10× bed volumes of ultrapure water.
- (11) Store agarose in 20% ethanol at 2-8°C.

7. Storage

Store at 2-8°C, and is stable for at least 2 years.

8. Precautions

1. Do not dry or freeze the agarose beads.

2. This product is for R&D use only, not for drug, house hold, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Neo-Biotech 74 rue des Suisses – 92000 Nanterre

9. Troubleshooting

Problem	Possible Cause	Solution
Highly	Lysate was highly	Centrifuge or filter (0.22 μm or 0.45 μm) before use.
backpressure	particulate	Sonicate the solution on ice; add 10 μ g/ml RNase A
		and 5 μ g/mL DNase I and incubate on
		ice for 10-15 minutes
	Lysate was too viscous	Remove organic solvent or protein stabilizing reagent
		(glycerol); decrease flow rate.
Low protein yield	Poor expression of	Optimize expression conditions.
	protein	
	His-tagged protein	Alter growth conditions to minimize inclusion body
	formed	formation; perform the purification
	inclusion bodies	for inclusion bodies with denaturing conditions.
	Not enough sample was	Reapply the flow-through to the column.
	loaded	
	Column washing was too	Reduce imidazole concentration in Wash Buffer.
	extensive	Reduce amount of Wash Buffer used.
	Protein degradation	Perform all procedure steps on 4°C; add some
		protease inhibitor.
	Insufficient washing	Increase duration of wash.
Poor protein	Existence of other	Modify imidazole concentration and pH of the Lysis
purity	His-tagged proteins in	Buffer or Wash Buffer.
	lysate	
	Nonspecific binding	Increase the salt or detergent concentration, or add
		ethanol or glycerol to decrease
		nonspecific interaction.
	Column was too dirty	Perform the "Clean-in Place" or/and "Regeneration".

Appendix: Reagents Compatibility

Reducing agents	5 mM DTE	
	_1 mM DTT	
	20 mM β-mercaptoethanol	
	5 mM TCEP	
	10 mM reduced glutathione	
Denaturants	8 M Urea	
	6 M Gu-HCl	
Detergents	2% Triton X-100 (nonionic)	
	2% Tween 20 (nonionic)	
	2% NP-40 (nonionic)	
	2% Cholate (anionic)	
	1% CHAPS (zwitterionic)	
Others	500 mM imidazole	
	20% ethanol	
	50% glycerol	
	100 mM Na2SO4	
	1.5 M NaCl	
	1 mM EDTA	
	60 mM citrate	
Buffers	50 mM sodium phosphate, pH 7.4	
	100 mM Tris-HCl, pH 7.4	
	100 mM Tris-acetate, pH 7.4	
	100 mM HEPES, pH 7.4	
	100 mM MOPS, pH 7.4	
	100 mM sodium acetate, pH 4	